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Abstract

In this paper we describe five paradigms for machine learning - connectionist (neural network)

methods, genetic algorithms and classifier systems, empirical methods for inducing rules and de-

cision trees, analytic learning methods, and case-based approaches. We consider some dimensions

along which these paradigms vary in their approach to learning, and then review the basic methods

used within each framework, together with open research issues. We will argue that the similarities

among the paradigms are more important than their differences, and that future work should at-

tempt to bridge the existing boundaries. Finally, we discuss some recent developments in the field

of machine learning, and speculate on their impact for both research and applications.

To appear in S. Shapiro (Ed.), Encyclopedia of artificial intelligence (2nd ed.). New York: John

Wiley & Sons.





1. Machine Learning and Artificial Intelligence

One central insight of artificial intelligence is that expert performance requires domain-specific

knowledge. Machine learning is the subfield of AI that studies the automated acquisition of such

knowledge. The aim is intelligent systems that learn m i.e., that improve th_ir performance as

the result of experience. Researchers study learning for a variety of reasons: to discover general

principles of intelligence, to better understand human learning, and to automate the process of

knowledge acquisition. However, the discipline is united in its concern with mechanisms for learning,

and methods proposed with one goal in mind often serve other purposes equally well.

Despite its separate identity, there are two important senses in which machine learning is an

integral part of the larger AI field. First, learning researchers must consider central AI issues of

knowledge representation, memory organization, and performance. Second, learning can occur in

any domain requiring intelligence, whether the basic task involves classification, problem solving,

reasoning, natural language processing, or vision. Thus, one can view machine learning as more a

framework for AI research and development than as a subfield of AI.

In the following pages, we review the current state of machine learning. We begin by identifying

relevant dimensions along which learning systems differ. Next we describe five different paradigms

for machine learning that have emerged over the past two decades. These include:

• counectionist (neural network) learning methods;

• geneticalgorithmsand classifiersystems; --

• empiricalmethods forinducingrulesand decisiontrees;

• analyticlearningmethods; and

• case-basedapproaches to learning.

Despite differencesin the representationsand algorithmsused by these approaches, allaim to

improve performance through the acquisitionof knowledge from experience.Moreover, we will

see that they must addressmany similarissues,and that they share many open problems. After

examining each oftheseparadigms, we considersome recentdevelopments in the fieldas a whole

and theirpotentialimpact on futureresearchand applications.

One relatedarea that we willnot examine isIrnowledgeacquisition(e.g.,Marcus, 1988). Like

machine learning,thissubfieldofAI isconcernedwith improving performance through the storage

of domain-specificknowledge. However, researchon knowledge acquisitionfocusesprimarilyon

directinteractionwith an expert by askingquestions,taking advice,and the llke.In contrast,

most work on machine learningemphasizes the acquisitionof knowledge through experiencewith

an externalenvironment or experiencewith internalproblem-solvingtraces.

2. Dimensions of Machine Learning Research

Before delvingintorecentresearchon machine learning,letus identifysome dimensions along

which alternativelearningparadigms vary. Below we discusssixissuesm the representationof

experience,the representationof acquiredknowledge,the performance task,the differencebetween

supervised and unsupervised learning,the distinctionbetween incrementaland nonincremental

learning,and the complementary notionsofinductionand explanation. "
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2.1 Representation of Experience

Most learning is based on experience, and this requires a representation for the experiential input

given to the learning system. Researchers have employed three broad classes of data structures, each

with different representational power. The simplest describes each individual experience as a list of

binary features, each corresponding to the presence or absence of some aspect of the environment.

For example, a particular symptom (say jaundice) may be present or absent for a given patient.

Connectionist and genetic algorithms typically employ feature-based input.

A second scheme assumes a known set of attributes, each having a set of mutually exclusive values.

Thus, one might describe an object as blue or red, but not both at the same time. Some attributes

take on numeric values (e.g., length, weight). Attribute-value representations are typically used by

empirical methods, such as those for rule induction and decision-tree construction.

A final approach employs relational or structural representations. These describe relations be-

tween two or more objects, such as the fact that object A is above object B (i.e., arbitrary pred-

icates). Such structural information can be stated in many formalisms, including predicate logic

and semantic networks. Although relational schemes have significantly more expressive power than

the other representations, tlley also introduce significant complexity into the matching process,

and this affects learning methods that use them. Research on analytic learning typically deals with

relational data structures, as does some work on empirical rule learning and case-based reasoning.

2.2 Representation of Acquired Knowledge

All learning systems acquire new knowledge, and they must represent that knowledge in some

fashion. The choice of knowledge representation is central in that it strongly influences choices of

performance and learning components. In fact, the five learning paradigms we discuss in Section 3

below are distinguished largely in terms of representational issues.

One choice is whether to store individual, concrete experiences or only abstractions based on

these data. Most work on machine learning has taken the latter path, and attempts to move

beyond the data to build more general knowledge structures that summarize previous experience.

Of course, hybrid approaches axe possible; these axe often called case-based approaches, and we

discuss them in Section 3.5. Note that methods that attempt to store only concrete experiences

must at some point generalize beyond the data ff they hope to apply to new experiences. Thus,

the real issue is whether such abstraction occurs aggressively as new experiences are stored (as in

most approaches) or lazily as needed during knowledge access (as with case-based approaches).

For abstract knowledge structures, another choice is whether to use a logical, discrete formalism or

one that involves numeric, continuous information. This is primarily a choice between using logical

connectives or numeric ones, respect_vely.-_-_-n'ic-a[_e ]eax_g _-d_ana_yt]_-_ingmetho_

have predominantly used the first path, whereas connectionlst systems have relied on the second.

Genetic algorithms can be profitably viewed as combining these two formalisms, as can recent

work on probabilistic learning. A related choice is whether to use a aggregated, coarse-grained

representation or a finer-grained one. These options axe sometimes referred to as "symbolic" and

"subsyInbolic" representations, respectively. Conventional wisdom associates the former scheme
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with empirical and analytic methods, and associates the latter with connectionist and genetic

approaches. However, as we argue in Section 3.6, these associations are more myth than fact.

2.3 The Performance Task

Learning involves improvement in performance, and thus learning cannot occur in the absence of

some performance task. The vast majority of machine learning research has focused on two broad

classes of domains -- classification and problem solving. Each has led to different concerns, distinct

insights, and unique applications.

Intelligent agents are repeatedly confronted with the need to classify or label their experience. For

example, upon encountering certain symptoms, a doctor diagnoses a specific disease. The generic

task can be easily stated: given some description of an experience, along with a set of known classes

and their descriptions, assign that experience to one or more classes. The most frequent successes

in expert systems have involved just such classification or diagnostic tasks (Davis & Lenat, 1982).

Much of the work on machine learning has focused on learning descriptions for classification.

However, an intelligent agent must also be able to solve novel problems and formulate plans. For

example, when going to a meeting, an agent devises a path from its current location to the target

site. The generic task can be stated as: given some desired state or goal, find some sequence of

actions that takes you from the current state to the desired one. Navigation and robot manipula-

tion are the most obvious applications of problem-solving techniques, but there are many others,

including scheduling. This area has been less popular within machine learning, but much of the

recent work has focused on acquiring knowledge to improve the speed and quality of methods for

planning and reasoning.

Finally, intelligent agents also participate in other high-level behaviors that may not fit neatly

into either the classification or problem-solving paradigms. Such behaviors include the design of

new artifacts, communication with other agents, and the control of motor effectors. To date,

the machine learning community has placed little emphasis on these areas, but because of their

potential, this will undoubtedly change in the future.

2.4 Supervised and Unsupervised Learning

Another dimension that influences learning is the degree of supervision. In some cases, a tutor or

domain expert may be present to give the learner immediate feedback about the appropriateness of

its behavior. This situation is typically called supervised learning. In other cases, an unsupervised

learner may have to fend for itself. Here the learner has little or no external guidance in building

knowledge structures or composing solutions to problems; at most, the environment provides coarse-

grained feedback about the learner's overall effectiveness on the task at hand.

Early work in machine learning focused on the simpler supervised task, and it continues to

receive considerable attention. There are good practical reasons for this interest. Although experts

generally have poor ability to introspect about their domain knowledge, they are much better at

providing examples of correct and incorrect behavior.
I



4 J. SCHr.XMMBRAND P. LANOL_.Y

Both forms of learning can occur in many contexts, though they take on different forms in

different domains. In classification domains, the supervised task is usually called learning from

ezamples, and the individual training experiences are called instances. This task can be stated as:

• Given: A set of instances (e.g., patient symptoms) and their associated classes (e.g., diseases);

• Fi_/: A general description for each class that matches only its instances.

This basic task has been examined within all the major paradigms of machine learning, and until

recently, the vast majority of research papers have dealt with this topic. However, there is now also

considerable interest in unsupervised concept learning, in which the learner must decide for itself

not only the class in which it should place each experience, but also the number of such classes.

This has been called clustering (Fisher & Langley, 1985).

In problem-solving domains, supervised learning occurs when a tutor is available to suggest the

correct operator or subgoal at each point in the search for a solution. Methods that operate in this

context are sometimes called learning apprentices, and they show promise as a way of extracting

knowledge from an expert (Mitchell, Mahadevan, & Steinberg, 1985) in problem-solving and design

domains. However, more research in this area has focused on unsupervised learning, in which the

agent must distinguish desirable actions from undesirable ones for itself. This has been called the

credit assignment problem (Sleeman, Langley, & Mitchell, 1982), and researchers have explored a

variety of responses across a number of paradigms.

2.5 Incremental and Nonincremental Learning

Some learning algorithms process experiences one at a time, whereas others process a large set of

experiences at once. The former class is often called incremental and the latter nonincrernento_

However, examining only the surface behavior of a system can be misleading, since an inherently

nonineremental system can always be run in incremental mode and vice versa. For example, ff one

lets a nonincremental technique retain exact copies of previous experience in memory, it can process

the first experience, then process the first two experiences, then process the first three experiences,

and so forth. Similarly, one can take an incremental method and iteratively run it through the

same set of experiences again and again. A better definition of incremental involves the number of

previously seen experiences one must reprocess during learning (Sch]immer & Fisher, 1986).

Both nonincremental and incremental approaches have their advantages. The former can collect

statistics about all the data, giving a learning method more information on which to base its

decisions. On the other hand, incremental methods tend to be more efficient and, in principle,

can deal with much larger data sets. Much of the recent machine learning research has focused on

incremental approaches, though there are some notable exceptions in the literature on connectionist

methods and on the induction of rules and decision trees.

2.6 Inductive and Analytic Learning

A sixth important dimension relates to the type of learning used to acquire knowledge. In one

class of approaches, inductive learning methods formulate knowledge based mainly upon observed

data. Empirical, genetic, and counectionist techniques are instances of this general strategy. These
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methods are inductive in the sense that they move beyond their input, and generalize it to create

knowledge that was not previously in memory. In contrast, analytic learning methods formulate

knowledge based mainly on other knowledge already in memory. Explanation-based learning is a

clear example of this type of approach; it uses prior knowledge to explain new experiences, then

simplifies the explanation and stores it in memory.

Inductive methods have also been called Icnowledge-level learners, since their acquired knowledge

structures change the deductive closure of the system (Dietterich, 1987). In contrast, analytic

methods are symbol-level learners; their compiled knowledge may increase efficiency but leave the

deductive closure unchanged. However, later we will consider some applications in which induc-

tive techniques produce symbol-level learning, and consider some conditions under which analytic

methods can produce knowledge-level shifts.

Of course, more unified approaches are possible. A learner could use prior knowledge from the

domain to constrain induction, producing partial explanations that still require inductive leaps to

form general structures. Alternatively, instead of using deductive rules to construct explanations,

a learner could use plausible inference rules; the resulting explanations may be plausible, but they

are not guaranteed to hold, and thus involve a sophisticated form of induction. Some researchers

have argued that the unification of inductive and analytic approaches should be given high priority

(Langley, 1989).

3. Five Paradigms for Machine Learning

Now we can examine some recent research on machine learning. We have divided the field into five

"paradigms" based upon the basic representations and learning methods employed -- counectionist

approaches, genetic algorithms, empirical rule learning, analytic learning, and case-based methods.

In each case, we review the basic approach, examine recent advances, and consider some open

research issues.

Each paradigm is loosely defined not only by a shared set of assumptions, concerns, and methods,

but also by the amount of interaction among researchers. Generally, people within a given paradigm

read and reference each other's papers, attend the same meetings and presentations, and all too

often ignore work in other paradigms. In Section 3.6, we identify some important relations among

these paradigms that reveal more similarities than appear at first glance.

3.1 Connectionist (Neural Network) Learning

Some of the earliest research on machine learning focused on counectionist methods (Nilsson, 1965),

and recently there has been a resurgence of interest in this approach. The name derives from the

basic representation for learned knowledge -- a network composed of nodes connected by directed,

weighted links (sometimes called "neural" networks because of the suggestive similarity between

the computational style of network nodes and neurons). Such systems typically assume that inputs

are represented as a set of binary features, with each feature being present or absent. In operation,

features that are present activate the network's initial nodes. Then, the weights on links from these
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nodes to others determine whether subsequent nodes will be activated. The process iterates until

activation has a chance to reach the network's final nodes, with the output of the network being

the activation of the final nodes.

Let us examine the connectionist framework's position on the dimensions discussed in Section 2.

Learning consists of modifying link weights to better mimic the desired relations among the inputs

and outputs. Thus connectionist approaches lend themselves naturally to performance tasks that

involve classification, but they can be adapted to more complex domains. Although not logical

in form, the connections encode the acquired knowledge and summarize the data encountered.

Predominantly, researchers have focused on methods for supervised learning situations, but there

are some exceptions. Connectionist researchers have also examined many alternative strategies for

adjusting link weights; many are incremental and all are inductive in nature.

3.1.1 PERCEPTRONS AND LINEAR THRESHOLD UNITS

The simplest form of connectionist network is the perceptron or linear threshold unit (Rosenblatt,

1962). In this framework, there is a single output node to which each input node is connected by a

single weighted link. The output node also has an associated threshold. Given a datum, the output

node sums the weights of the links from active input nodes (those whose features are present). If

this sum exceeds the threshold, the output node is activated; otherwise it remains inactive. Figure 1

presents an example of a simple perceptron.

Despite their simplicity, perceptrons can represent a variety of functions. For example, consider

a network in which N links have a weight of one and all others are zero. If the threshold is set to

N, the network encodes a "rule" that matches only when the conjunction of the nonzero features

are present. Similarly, if the threshold is set to one, the same network encodes a disjunctive "rule."

Using a threshold of K (where Ar > K > 1) lets the network concisely express the K of N function.

Unlike the former two, this latter function is difficult to represent using logical notation. Moreover,

allowing weights other than one supports an even broader class of functions. In fact, given the

appropriate weights, a perceptron can represent any linearly-separable class. In other words, if we

view the F features as defining an F-dimensional space, the network can describe any class that

involves placing a single hyperplane between the instances of two classes.

There are a number of straightforward methods for learning appropriate link weights given ex-

ample input-output pairs. One of these, the perceptron learning rule, learns only when it makes

a prediction error. If the output unit is not active when it should be, then its incoming weights

are too low; accordingly, they are incremented by a small constant. By the same reasoning, if

the output unit is active when it should not be, the weights are too high and are decremented by

the same small constant. Part of the appeal of this incremental method is that it is guaranteed

to converge on any linearly-separable class given a finite number of instances (Miusky & Papert,

1969).

Other learning methods, such the LMS procedure (Widrow & Hoff, 1960), modify each weight

differentially in an attempt to reduce the mean-squared error between the desired and generated

output. This approach can be run incrementally or nonincrementally (using all available instances),
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If a feature is true of the current
fuel pump, then the corresponding
node inputs its weight.

Input-_

If Material is Steel,
Then 5;
Otherwise 0.

flf Filter is Present,
Input-_ Then 3;

_. Otherwise 0.

I . flf Outputs > 2,
npm-_ Then 2;

_. Otherwise 0.

To adjust the threshold to compensate
for the likelihood of overheating, one
node always inputs its weight.

flf The sum of all inputs > 0,
Output-_ Then Overheats;

_. Otherwise Stays-Cool.

Figure 1. Schematic of the organization of a linear threshold unit for a simple domain in which one must
predict whether a fuel pump will overheat based on the material, the number of outputs, and the
presence of a filter. Inputs correspond to instance features (shown at the top of the figure). If these
features are present, their weights are summed by the output unit (shown at the bottom). Learning
modifies the weights associated with inputs and thereby alters the summed output. An additional
constant input (lowest and leftmost input) lets the linear threshold unit adjust its threshold.

and it can be generalized to handle networks with continuous rather than binary inputs. Linear

threshold units have been used to learn regular and irregular endings for the past tense of English

verbs (Rumelhart & McClelland, 1986), and a perceptron-like learning method has demonstrated

its ability to acquire expert-level performance in the game of checkers (Samuel, 1959).

3.1.2 BACKPROPAGATION IN MULTILAYER NETWORKS

Despite their attractiveness, single linear thresh01d-unlts cannot represent or learn class descriptions

that are not linearly separable. Although higher-order components like quadratic threshold nodes

might be feasible, a more common approach uses a network with multiple layers. These structures

include intermediate, or hidden, nodes that are indirectly connected to the inputs and outputs

of the network. Given sufficient breadth in this structure, the network can express an arbitrary
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functionofthe inputfeatures.Moreover,ifthe structureisrelativelyshallow.(i.e.,only shortpaths

from inputsto outputs),largenetworks ofthissortare computationallyefficientto use.However,

learningthe weightsforsuch networks isanothermatter entirely,and much of the recentresearch

on connectionistlearninghas focusedon thisissue.

One of the most intuitiveapproaches to learningappropriatelinkweights in a multiplelayer

network appliesthe LMS procedure recursively.Known as baclcpropagation,thisprocedure first

propagates activationthrough the network in the normal, forward direction.Based on the difl'er-

ences between observed and desiredoutputs,backpropagation uses LMS to compute the desired

activationlevelson the hidden nodes one levelback. Not only does thisindicatethe appropriate

weightchange in the finallinks,italsoallowsbackpropagationto treatthe hidden nodes as ifthey

were output nodes. Using the diiTerencebetween the observed and desiredactivationforhidden

nodes,backpropagation appliesLMS recursivelyuntilitreachesthe input nodes.

Like the perceptron learningrule,backpropagation isconducting a searchin the space of link

weights. Effectively,both carry out a hill-climbingsearch in which the gradient isdefinedby

errorreduction.Unlike the convergenceresultforthe simplerlearningrule,backpropagation may

become stuck in localoptima. This has not emerged as a significantproblem in studiesto date,

but itremains an open issue.More pressingproblems include a very slow rate of learningand

some dependence on the number ofhidden nodes. One noteworthy applicationdemonstrates that

backpropagation can acquirepronunciation knowledge that accuratelypredictsphonemes from

Englishtext (Sejnowski& Rosenberg, 1987).

3.1.3 ALTERNATIVE APPROACHES TO CONNECTIONIST LEARNING

Researchershave explored a number of other approaches to learningin multi-layernetworks. For

example, Boltzmann machines are a probabilistictechniquebased on an analogy with thermo-

dynamics, in which nodes settleinto stableconfigurationsas the "temperature" of the system

decreases(Ackley,Hinton,& Sejnowski,1987).Such methods must be run many times,in orderto

reach "equilibrium"and to collectstatisticsabout the probabilityofconnectednodes being active

simultaneously.As a consequence,they aretypicallyeven slowerthan backpropagation.Neverthe-

less,Boltzmann machines alsohave advantages,and activeresearchcontinuesin the area,including

applicationsto speechrecognition(Prager,Harrison,& Fallside,1986).

Other researchers have taken a reinforcement le_ approach. In this framework, instead of

Rue-grained feedback about each of the network's outputs, the only information available is a single

evaluation score for the network's overall behavior on each instance. For example, Barto, Sutton,

and Anderson's (1983) AR-P algorithm rewards or penalizes each weight in the network equally as

a function of the reinforcement evoked by the network's overall behavior. This learning scheme has

been successfully applied to a number of domains, including a pole-balancing task involving the

dynamic control of forces over time. Like the other methods, this approach extends to domains in

which the inputs are real-valued rather than binary.

In other studies,researchershave explored the behavior and capab_ties of cyclicand deeply

nested network structures.For example, a cyclicnetwork has itsinput nodes connected to its



PARADIGMS FOR MACHINE LBARNING 9

output nodes and vice versa. This design allows networks to memorize patterns, and given a partial

or noisy pattern to recalI, the net can reconstruct the complete, noise-free original (Kohonen, Oja,

Lehti6, 1981). In a deeply nested network, hidden nodes are ordered, and each successive hidden

node receives input from all prior hidden nodes. Nesting the hidden nodes capitalizes on the

representations they have learned, and the resulting structure tends to generalize better (Fsh!msn

& Lebiere, 1990).

3.1.4 OPEN ISSUES IN CONNECTIONIST LEARNING

Research on learningin the connectionistframework has made significantstridessincethe early

resultswith perceptrons,and initialapplicationshave startedto emerge. Still,a number of serious

issuesremain to be addressed:

s Increasing the rate of learning. Existing methods learn very slowly, often requiring many

iterations through the training instances. Future research should examine the factors that

affect the learning rate and develop connectionist methods that learn more rapidly (Fahlman,

1988; Hampson & Volper, 1987).

• Generalization. Current methods converge on weight settings that summarize training in-

stances, but sometimes this is at the expense of accurate generalization over unseen instances.

This issue becomes especially important when the training data are noisy (Fisher & McKnsick,

1989; Knight, 1989; Weiss & Kapouleas, 1989).

• Structural knowledge. Some domains seem inherently relational, but connectionist methods

rely on feature-based representations. The framework must be adapted to represent and learn

from relations] and structural input (Hinton, 1986).

• Sequential behavior. Connectionist techniques lend themselves to parallel implementations,

but they have dJfilculty carrying out ordered actions like those required for problem solving.

Extended architectures are needed that can handle sequential behavior, along with learning

methods that can support them (Elman, 1990; Mozer & Bachrach, in press).

• Incorporating domain-specific bias. Perceptrons have a strong bias towards learning linearly

separable classes, but multi-layer networks search a much larger space. Future research should

examine methods for incorporating biases into multi-layer networks that constra£u the learning

methods' search and improve their learning rates (Towell, Shavlik, & Noordewier, 1990).

Growing numbers of AI researchers are examining the connectionist paradigm seriously and many

are concerned with issues of learning. Theoretical analyses and experimental studies have begun

to reveal a deeper understanding of these methods' advantages and drawbacks, pointing the way

to the extensions and improvements outlined above.

3.2 Genetic Algorithms and Classifier Systems

Genetic algorithmsare a family of adaptive searchmethods that derivetheirname from a loose

analogy with geneticchange in a population of individuals.Like connectionistmethods, most

geneticalgorithmsassume a feature-basedrepresentationofinstancesand events.However, rather
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Patterns:

If Material is Aluminum and Filter is Present,

Then Stays-Cool.

If Material is Steel, Filter is Absent, and Outputs is 1,

Then Overheats.

Weights:

0.5

1.0

To classify,
output the
class of the
strongest
matching

pattern.

The crossover operator creates two new patterns by
combining two older, highly weighted patterns. A
cut point is selected, and the postfix of one pattern is
appended to the prefix of the other (and vice versa).

Old patterns:
_=e=_=.==e=a=milteQ.me_uogw...........o*a=°=-------=--------- .....

2
If Material is Steel

Then Overheats.

a_d Filter is Present and Outputs > 2,

v

If Filter Is Absent and Outputs is 1,

Then Overheats.

IIIIIIIIIIIIIIIiiIIIIIIIIIIIIIIIIIIIIIIIIIIII!I!IIIIIIIIIII_

New patterns:

If Material is Steel and Filter is Absent and Outputs is 1,Then Overheats.

If Filter ts Present and Outputs > 2,

Then Overheats.

Figure 2. Schematic of the representations and operators used in the genetic algorithm as applied to the
fuel-pump domain. The weights of conjunctive patterns (shown at the top of the figure) arc nsed
to classify instances. Learning modifies both the weights Of _tterns-and tlaeir conditions' The
simplest operator generates new patterns that are minor random variations of old ones (not shown).
The crossover operator (shown at the bottom) splices together an arbitrary prefix of one pattern
with an arbitrary suiTLx of another (and vice versa).

than using a weighted network to represent acquired knowledge, they employ a disjunctive set

of knowledge structures or patterns. Each pattern is conjunctive and specifies the presence (or

absence) of some features. Patterns also have an associated weight, sometimes called the pattern's

fitness, that summarizes its performance on past experiences. Given a new instance, a stochastic

scheme follows the recommendations of strong matching patterns to reach a decision (Wilson, 1987).

In terms of the dimensions of Section 2, this paradigm lends itself naturally to performance tasks

that involve both classification and problem solving, as we discuss below, l_esearch on genetic
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algorithms has focused on supervised learning situations, although often the feedback is some overall

score, as in the reinforcement learning framework discussed above. Researchers have explored a

number of inductive approaches to incrementally modifying the content of individual patterns and

their weights, and they have successfully applied genetic algorithms and classifier systems to a

variety of tasks (Goldberg, 1990).

3.2.1 LEARNING WITH GENETIC ALGORITHMS

In addition to using a different learned representation, genetic algorithms and connectionist tech-

niques also carry out a different type of search during learning. Whereas connectionist methods

apply a hill-climbing operator to a single state (one set of weights), genetic algorithms apply several

heuristic operators to a set of states (patterns). As shown in Figure 2, genetic algorithms fonow

three steps in processing new experiences: updating pattern strengths, applying search operators,

and pruning ineffective patterns. Methods for updating weights vary widely between specific ge-

netic algorithms, and we discuss several below. For the second step, genetic algorithms typically"

use two operators, crossover and mutation, that apply to strongly weighted patterns to produce

syntactically similar new patterns; crossover is analogous to gene splicing, whereas mutation intro-

duces random, minor variations. To maintain the size of the pattern set, the third step replaces

prior, weakly weighted patterns with new patterns. In a sense, patterns compete with each other to

produce "offspring" in the next cycle or "generation." There is a large body of both theoretical and

empirical evidence showing that, even for very large and complex search spaces, genetic algorithms

can rapidly locate effective knowledge structures using about 50 to 100 patterns.

Applying genetic algorithms to classification tasks is straightforward when instances can be

represented as features. The set of knowledge structures is initialized to N random patterns, some

of which will be very specific and others of which will be quite general. Each pattern is assigned

a class. To adjust the weights, each time a pattern is successful (i.e., it matches an instance from

its own class or it fails to match an instance from another class), its weight in incremented; each

time a pattern is unsuccessful (i.e., fails to match its class or matches another class), its weight is

decremented. Because pattern weights are decremented when they fail to match instances in their

class, if the concept to be learned is disjunctive, the weight of every pattern will be decremented

at one time or another. Nevertheless, pattern strength is still a useful heuristic for directing search

through the space of descriptions, and genetic algorithms can learn complex disjunctive concepts,

even in noisy domains (Wilson, 1987). This ability results in part from the inclusion of many

patterns in each generation, some of which compete and others of which complement each other,

in that they come to occupy different 'niches'.

3.2.2 CLASSIFIER SYSTEMS AND PROBLEM SOLVING

Classifiersystems are an architectureforproblem solvingthatincorporatesa geneticalgorithmas

a component. Most work along theselinesassumes a simple,forward-chainingproduction system,

consistingofa setof condition-actionrulesand a dynamic working memory. Each ruleisweighted

and has one or more featurepatternsas itsconditionand a singlepattern as itsaction.Memory
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containsa setof fullyspecifiedpatterns,or messages,thathave a valueforallfeatures.Through

encoding conventions,some messages originateas inputsto the system and otherstriggeroutputs.

The classifiersystem framework extends the standard forward-chainingrecognize-actcycle.On

every cycle,each rulewhose conditionsmatch messages inmemory makes a bidproportionalto its

weight.One or more rulesare then selectedforapplication,with probabilitiesproportionalto their

bids. The selectedrulesare appliedby adding the patternsin theiractionsto working memory.

These new messages may allowotherrulesto match, and the cyclecontinues.

There are two main aspectsto learningin classifiersystems. First,a geneticalgorithmisused to

generatenew candidaterulesfrom existing,stronglyweighted rules(similarto theprocessdescribed

above). Second, the classifiersystem adjuststhe weights ofrulesbased on theircontributionto

desirablebehavior. This involvesassigningcreditto usefulrulesand blame to faultyones. An

effectiveapproach to thislatterlearningproblem iscalledthe bucketbrigade(Holland,1985).As

rulesapply,they pass along a portionof theirweight to the rulesthat appliedin the cyclebefore

them. Some ruleultimatelyisrewarded directlyby the environment,and thisreward isiteratively

passed back through the rulesin the applicationchain,increasingtheirweights. In the simplest

case,the weight of any rule that participatesin the chain eventuallyconvergeson the amount

receivedby the lastrule in the chain. As a consequence,rulesthat apply but do not lead to

externalreward are consistentlypaying out theirweightwithout receivingany reinforcement,and

theirweight diminishes.Classifiersystems have been successfullyappliedto a varietyofdomains,

includingregulationofgas flowthrough pipelines(Goldberg,1985)and survivalin aresource-scarce

environment (Booker, 1988).

3.2.3 ALTERNATIVE USES OF GENETIC ALGORITHMS

Unlike classifiersystems,which apply operatorsto propose individualnew rules,another approach

tousing geneticalgorithmsforproblem solvingappliesgeneticoperatorsto entirerulesets.Rather

than exploringvariationsof rule conditions,the operatorsprimarilyexplore variationson rule

combinations.Because ofthis,the knowledge structureiscomposed of multiplerulesets,each of

which constitutesa forward-chainingproductionsystem thathas an associatedweight.

In thisframework, the weight of each ruleset is evaluatedby running the ruleson a set of

trainingproblems. Sincerulesetswith strongweightstend to be selectedby the searchoperators,

usefulcombinations ofrulesare propagated through the knowledge structure,and lessusefulrule

combinations are graduallyeliminated.The operatorsoccasionallyintroducenew rules,but these

arealwaysevaluatedinthe contextoftheirruleset.The power oftheseideashas been demonstrated

by a state-of-the-artpoker-playingsystem (Smith, 1983) and by an effectivesystem formultiple

classdiscriminationin the domain ofhuman gaitanalysis(Schaffer& Grefenstette,1985).Recent

researchalsoshows that a combination ofthisapproach and classifiersystems performs betterin

some domains than eitherin isolation(Grefenstette,1988).
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3.2.4 OPEN ISSUES IN GENETIC ALGORITHMS

Although considerableprogresshas occurredin the understandingofgeneticalgorithmssincetheir

inception,many open researchissuesremain. These include:

• Alternativerepresentations.Genetic algorithmstypicallyassume a feature-basedrepresenta-

tion of knowledge. Future work should explore the applicationof these methods to more

sophisticatedrepresentations(Gordon & Grefenstette,1990;Koza, 1989),adding new genetic

operatorsifnecessary.

• Acquired representations.Classifiersystems can representcomplex classdescriptionsby the

organization,variability,and distributionof weights in clustersof rules.However, we need

to betterunderstand the underlyingnature of such learnedrepresentationsand how are they

acquired(Belew & Forrest,1988).

• Emergence of useful symbols. Classifier systems can use tags to build associations between

rules, producing behavioral sequences. Recent work has explored the development of such

internal symbols and the conditions under which they emerge (Shaefer, 1987).

• Credit assignment. The issue of credit assignment is central to applying genetic algorithms

to problem solving, and a variety of methods have been proposed, including weight update,

conflict resolution, and the use of "taxes. _ Research is needed to determine the conditions

under which each approach behaves we/l, and to explore hybrids that might do better than any

method in isolation (Grefenstette, Ramsey, & Schultz, 1990).

• Incorporating domain knowledge. Genetic algorithms seem especially well suited for knowledge-

lean domains in which extensive search is necessary, but they may also be able to use and refine

existing domain knowledge.

• Population size. In some domains, genetic algorithms should behave significantly better than

hill-climbing techniques (e.g., connectionist methods). Some research has studied the effect of

the number of patterns in a knowledge structure (Robertson, 1988), but future work should

identify the broader conditions under which maintaining a redundant knowledge structure is

worth the cost.

Researchers in the genetic algorithm comm_ty are already attacking these problems, but more

work remains before this promising approach achieves its full potential.

3.3 Empirical Learning Methods

Another community of machine learning researchers have studied empirical methods for the acqui-

sition of more explicit knowledge structures. Let us consider the dimensions of Section 2 for this

approach. Like connectionist and genetic methods, these techniques are inductive, in that they

move beyond training instances to make predictions about novel cases. Unlike them, empirical

learning methods have employed relational and structural representations for both experiences and

acquired knowledge, though the majority of research has thus far focused on propositional repre-

sentations. Much of the early work on empirical learning dealt with classification domains, but

there has also been progress on problem solving and natural language acquisition.
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Currently there are a varietyof well-understoodmethods that learnproduction rules,decision

trees,and concepthierarchies(toname a few ofthe many learnedrepresentations).Some methods

requirethe closesupervisionof a tutor,as describedin Section2.4,whereas otherslearnin an

unsupervised fashion. Some techniquesrequireallinstancesat the outset,whereas otherslearn

incrementallyand can processnew instanceswith littleadditionaleffort.In thissectionwe review

threemain approaches to empiricallearning,along with some open researchproblems.

3.3.1 EMPIRICALLY LEARNING PRODUCTION RULES

One common scheme forrepresentingdomain expertiseusesproductionruleswhose conditionstest

propertiesof experiencesand whose actionsspecifyclassifications.Researchershave exploreda va-

rietyof empiricalmethods forlearningsuch rulesfrom a setofpreclassifiedtraininginstances,and

most approaches relyon the factthat the space of ruleconditionsarepartiallyordered according

to generality.Thus, one can startwith the most specificpossibledescription,using a generalization

operatorto remove or relaxconditions.Alternatively,one can startwith the most generalpossible

description,using a specializationoperatorto add or constrainconditions.The candidateelimina-

tionalgorithm(Mitchell,1977) employs both oftheseideasto carryout a bidirectionalexhaustive

searchtoidentifyconditionsforclassificationrules.For eachpossibleclass,the algorithmmaintains

a versionspace that summarizes the space ofhypothesizedconditionsin terms of a most specific

boundary setand a most generalboundary set.New positiveinstancemay indicatethe need for

more general descriptions,forcingrevisionof the specificboundary, whereas negative instances

may suggestmore specificdescriptions,leadingtorevisionofthe generalboundary. This continues

untilthe algorithm convergeson a singleconjunctivedescriptionin both sets,or untilone of the

boundary setsbecomes empty, indicatingan inconsistency.

The candidateeliminationalgorithm assumes that a single,conjunctiverulecan describeeach

class,and that traininginstancesare freeofnoise.However, disjunctsand noiseare common in

appliedsettings.Another appealingfamilyoflearningmethods relaxestheseassumptions and uses

heuristicsearch to limitcomputational expense. These methods employ beam search or related

methods to find individualrulesthat discriminatebetween positiveand negative instancesof a

class.Search may occur from generalto specificrulesor in the oppositedirection.During each

search,candidateruleconditionsareminimally specialized(orgeneralized)inallpossibleways,each

specialization(or generalization)isheuristicallyevaluatedforpredictiveaccuracy on the training

instances,and thebestarefurthermodified.Searchterminateswhen none ofthenew specializations

(or gener_ations) are statisticallybetterpredictorsthan theirpredecessors,at which point the

best candidate isused to constructa classificationrule. To handle disjunctivedomains, some

methods then remove allpositiveinstancesfrom the trainingsetthat are coveredby thisruleand

repeat the searchprocessoverthe remaining instances,continuinguntilallpositiveinstancesare

covered by some rule (Michalski,1983; Clark & Niblett,1989). Figure 3 depictsthisapproach

graphically.

Methods ofthissorthave been successfullyappliedto moderately realistictasks.For example, in

the domain of lymphography, some rule-learningsystems (Michalski,1987; Clark & Niblett,1989)

have equaled the classificationaccuracy of human experts(82% correct).Another rule-leaxning
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Any fuel pump

Material is Steel

Material is Steel Material is Steel
and and
Filter is Absent Filter is Present

Search moves from general rule conditions to specific ones
until the matching pumps are not statistically distinguishable.

If Outlets < 2 and Filter is Present,
1 Then Overheats.

The result of the search forms
2 the next rule in the sequence.

The last rule matches all
n Stays-Cool. remaining fuel pumps.

To classify, output
the class of the first
matching rule.

Figure 3. Schematic of the representation and search used in CN2, a recent rule learning method (Clark &
Niblett, 1989), in the fuel-pump domain. Learned rules (shown at the bottom of the figure) are
ordered, with the last rule identifying the class of any remaining instances. Search maintains a
limited size boundary as it looks for rule conditions that are both predictive and reliable. Initially,
it looks for a consistent description of a single class given all the instances, and subsequently it
searches for a consistent description of those examples not covered by any rules found thus far.
Search terminates when all instances are covered by some rule.

system (Scldimmer, 1987) has demonstrated similarresultsfor recognizingpoisonousmushrooms

(95%) and predictingthe politicalparty of Congressmen based on theirvotingrecords(90%).

In spirit,methods forlearningproductionrulesaresimilarto connectionistand geneticmethods.

However, there are some significantdifferences.As we have seen,most of these methods take

advantage of the factthat the space of classdescriptionscan be partiallyordered by generality.

Thus, most rule-learningschemes searchusingspecializationoperators,generalizationoperators,or

both. Second,the searchinmost rule-learningmethods isbiasedtoward findingsimpledescriptions'.
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Ifthisisappropriatein a givendomain, then thesemethods tend to learnmuch more quicklythan

connectionistor geneticmethods. Finally,some rule-learningmethods representexperienceand

learned knowledge using relationaland structuralrepresentations,givingthem more expressive

power than other approaches.

Although methods forempiricalrulelearningwere originallydesignedwith classificationdomains

in mind, they can alsobe appliedto problem-solvingtasks.For example, given a setof legalop-

eratorsfor carryingout state-spacesearch,the same methods can acquirethe he,risticconditions

under which each operator should be applied. However, thisapproach requiresfirstidentifying

appropriateand inappropriateapplicationsof each operator,and thisisequivalentto assigning

creditand blame to stepsalong a searchpath. One response to thislatterissueinvolveswaiting

untila complete solutionhas been found. Then, stepsalong the solutionarelabeledas appropriate

operatorapplications,whereas allstepsleadingoffthe solutionare labeledas inappropriate(Lan-

gley,1985; Mitchell,UtgoiT,& Banerji,1983). Another response to the credit/blameassignment

issueinvolvesinteractingdirectlywith a domain expert who providesimmediate feedback about

the desirabilityof each action.In eithercase,one can then apply empiricallearningmethods to

the appropriateand inappropriateapplications(aspositiveand negativeinstances-instancesof the

class,respectively),producing heuristicrulesas output.

3.3.2 CONSTRUCTING DEClSIO_ TREES

Other work on empiricallearningtakes quitea differentapproach to the supervisedlearningtask.

This framework assumes the same input as systems that learn production rules (i.e.,a set of

instancesassignedto classes),but the learnedknowledge isrepresentedas a decisiontree(Brieman,

Friedman, Olshen, & Stone,1984; Quinlan, 1983). Each nonterminal node of thistreespecifies

some attributeto test,each branch specifiesan alternativevalue,and each terminalnode specifies

a class.To classifya new instance,a decisiontreeiterativelytestsnon-terminalnode attributes

of that instanceand followsmatching branches untilitreachesa terminalleafthat classifiesthe

instance.

The most common decision-treelearningmethod usesa divide-and-conqueralgorithm,selecting

domain attributesto partitionthe instancesand recursivelybuildingsub-decisiontreesto describe

partitions.An evaluationfunctionselectsthe most discriminatingattributeforeach non-terminal

node'stest.Instancesare partitionedbased on theirvaluefor the testattribute,and subtreesare

constructedto describeeach partition.As the process iterates,subtreesare complete when all

instancesintheirpartitionhave the same class(orwhen thereareno more attributestotest).This

processcan be viewed as a greedy,general-to-specificsearchthrough the space of decisiontrees.

Figure 4 shows an example ofthisapproach.

Decision-treemethods have been appliedto a varietyclassificationtasks,representinga mix

of syntheticand natural domains. For example, induced decisiontreescan successfullyrecognize

lostchessendgames (100% forlossesin three-ply)(Quiulan,1983),and they can accuratelyclassify

thyroiddiseases(99%) (Quinlan,Compton, Horn, & Lazarus,1986).The latterapplicationresulted

in a decisiontreethat outperformed a hand-craftedexpertsystem thattook yearsto construct.
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The first test best discriminates between Material?
overheating and cool fuel pumps.

is Alum_

This test best discriminates
between overheating and Outlets?

cool aluminum fuel pumps.

2:/ -.<.
Stays-Cool Filter?.

Summarizes aluminum

fuel pumps with more
than one outlet.

Overheats

Summarizes steel

fuel pumps.

is P_ent

Overheats Stays-Cool

Summarizes aluminum Summarizes aluminum

fuel pumps with one fuel pumps with one
outlet and a filter, outlet but no filter.

Figure 4. Schematic of the representation and search used in decision tree learning for the fuel-pump domain.
To classify an instance, the test at the root of the tree (shown at the top of the figure) is applied
first, and based on the outcome, classification proceeds with the appropriate subtree. The search
begins by determining the single most discriminating test. Instances are then partitioned by their
outcome for this test. The standard method terminates search when all instances in a partition
are of the same class (or there are no more tests), but some variants use statistical tests to halt
earlier as an effort to avoid overfitting.

Methods for inducing decision trees constitute some of the most widely studied algorithms within

the machine learning community. Extensions include techniques for pruning trees in response to

noisy training data (Brieman et al., 1984; Kononenko, Bratko, & Roskar, 1984; Quinlan, 1986b),

methods for detecting useful thresholds on numeric attributes (Quinlan, 1986a), and algorithms for

incrementally revising a tree in response to new data (Schlimmer & Fisher, 1986; Utgoff, 1989).

Decision-tree methods have received significant attention within applied AI circles, and some in-

dustrial groups have used them to automatically construct expert-level diagnostic systems.

3.3.3 FORMING CONCEPT HIERARCHIES

In unsupervised concept learning tasks, no expert is available to classify instances for the learner.

Instead, the learner is given a set of unlabeled instances and is asked form to "useful" concept de-

scriptions. A common approach to this problem, called conceptual clustering (Michalski & Stepp,

1983), involves (a) determining how to cluster the instances and (b) building descriptions for those

clusters. Typically, conceptual clustering methods form a hierarchy or taxonomy of concepts. Al-

though they are superficially similar to decision trees, each node in a concept hierarchy has an

associated concept description that is used during classification. Also, although both paradigms
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typically involve a top-down search from simple to more complex representations, conceptual clus-

tering methods use different search operators and evaluations functions than those used for building

decision trees. For example, some techniques measure the simplicity of the potential clusters' de-

scriptions; others aim to maximize predictive accuracy over all attributes, since no class information

is available.

Conceptual clustering is an active area of research within the empirical learning paradigm. Recent

work has focused on using goals to direct the clustering process (Stepp _ Michalski, 1986), on

devising incremental methods for hierarchy formation (Fisher, 1987; Lebowitz, 1987), and on the

role of probabilistic descriptions in clustering (Cheeseman, Kelly, Self, Stutz, Taylor, & Freeman,

1988; Fisher, 1987). These methods hold considerable promise because they address the issue of

organizing concepts into integrated memory structures.

Methods for conceptual clustering appear to be appropriate for classification domains where

no expert is readily available. For example, musicologists viewed the taxonomy formed by one

conceptual clustering algorithm as a significant, scientific contribution (Michalski & Stepp, 1983).

Similarly, a learned set of classes of infrared stellar bodies were judged significant by astronomers

(Cheeseman et al., 1988). Finally, conceptual clustering methods have led to improved performance

on prediction tasks for other domains, including soybean diagnosis and congressional voting records

(Fisher, 1987).

3.3.4 OPEN IssuEs IN EMPIRICAL LEARNING

Although our understanding of empirical learning methods has reached the stage where initial

applications are feasible, basic research is still in progress. Active areas of research include:

• Incremental leaeni_. Many existing empirical methods are nonincremental: they must re-

process many instances to incorporate new information. Incremental methods can be more

ei_cient, but most are not yet as robust as their nonincremental counterparts (Fisher, 1989;

Utgoff, 1989). _ _± :.......... : ......

• Search-limited methods. Many _s{_g empirical techniques carry out a significant search

through their space of descriptions. Search-limited methods, such as hill climbing and greedy

algorithms, are much more efficient, but they should be modified to increase their chances of

finding satisfactory solutions (Quinlan, 1986a; Langley, Gennari, & Iba, 1987).

• Incorporating domain knowledge. Most empirical learning systems use domain knowledge in

minimal ways. These meth0ds should be extended to use available knowledge to constrain

search and produce clearer knowledge structures (Drastal, Raatz, & Czako, 1989; Elio &

Watanabe, in press; Hirsh, 1989).

• Representation change. Most learning systems are unable to extend their initial representa-

tion language' Emp_eal methods for defining new terms hoId great promase, but they must

constrain their search for such terms and generate effective candidates (Muggleton & Btmtine,

1988; Pagallo, 1989; Matheus & RendeU, 1989).
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Noise and concept drift. Some methods are robust with respect to noise and changing envi-

ronments (Schlimmer & Granger, 1986), but researchers should explore the general principles

underlying these issues and identify the class of techniques that can handle them.

Uncertainty and probability. Many expert systems for classification employ probability or other

techniques for handling uncertainty, but few learning methods incorporate these ideas. Re-

searchers need to extend existing representations and methods so as to handle uncertainty

(Fisher, 1987; Geiger, Paz, & Pearl, 1990).

Research on empirical techniques is leading to continual progress on the above problems, but much

remains to be done in this promising area of machine learning.

3.4 Analytic Learning

In contrast to the inductive learning methods discussed so far, another major paradigm in machine

learning focuses on analytic learning. This approach emphasizes the transformation of existing

domain knowledge into a more useful form, using data only to guide the application of deductive

processes to this knowledge. These methods are sometimes called symbol-level learners (Dietterich,

1987) because the learned knowledge increases efficiency. 1 If the performance system must oper-

ate under limited resources, such as time or memory, then such learning can indirectly lead to

improvements in accuracy as well.

In terms of the dimensions of Section 2, learning methods in this paradigm typically encode

experiences, domain knowledge, and learned knowledge with relational representations. Because

efficiency is the most obvious benefit of analytic learning, these methods have typically been ap-

plied to problem-solving performance tasks. They have also been studied in both supervised and

unsupervised learning situations; in addition to constructing new operators, these methods have

also been applied to the task of improving operator selection. As many have observed, methods

of this type could be applied to existing knowledge without the aid of data to guide learning.

This nonincremental approach has been predominantly shunned in favor of more computationally

efficient, incremental approaches, though there are recent exceptions (Etzioni, 1990).

Ezplanation-based learning is one common approach that can be viewed as compiling knowl-

edge into an efficient form rather than creating or extending knowledge. This class of learning

methods can simplify a problem solver's reasoning process by composing rules into useful combi-

nations. Explanation-based learning can also acquire control knowledge that limits alternatives,

thus reducing the amount of search problem solving incurs. There currently exist number of well

specified algorithms for explanation-based learning, and recently there have been some successful

applications to significant problem-solving tasks. In this section, we review the basic approach, its

adaptation to problem solving, and open research questions.

1. However, in some applications, inductive methods can also improve efficiency (Langley, 1985; Mitchell et al., 1983;

Ohlsson, 1987).
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3.4.1 COMPILING EXPLANATIONS INTO RULES

Much of the AI research on reasoning and theorem proving takes a problem reduction approach.

This framework assumes that domain knowledge is specified as a set of inference rules or goal

decompositions. For example, to get from Washington to New York, an agent can drive to National

airport, fly to LaGuardia, and take a taxi into the city. Given a top-level goal, an agent can use

"and-or" search to find some set of primitive actions, states, or beliefs that will achieve that goal.

Some programming languages, such as PaOLOG, support this form of reasoning directly.

The result of a problem-reductlon search is a "proof tree" or "explanation" for how to achieve

the initial goal. Methods for explanatlon-based learning use this information during the learning

process to create summarizations of search that can simplify future search for similar goals (DeJong

& Mooney, 1986; Mitchell, Keller, & Kedar-Cabelli, 1986). More precisely, given a problem and its

solution, explanation-based learning uses a proof tree for the solution of a problem to: (a) focus

attention on relevant problem features, and (b) summarize the problem-solution pair as a general

rule. The resulting rule states the conditions under which the proof will hold, and in the future,

similar problems can be solved in fewer search steps.

Figure 5 summarizes the basic ideas that underlie explanation-based learning. This approach

provides an important demonstration of the use of knowledge in learning, and the basic method

can be applied to any domain in which knowledge can be stated as monotonic production rules

(i.e., rules that only add knowledge). This includes problem-solving domains for which useful goal

decompositions are already known, as well as many reasoning tasks and design problems.

3.4.2 LEARNING MACRO-OPERATORS

Not all research on problem solving views this process in terms of and-or search. In contrast, some

work focuses on state-space search, in which one applies a sequence of operators to problem states

in order to achieve some desired state or goal. For example, in the blocks-world domain, states

and goals involve specific configurations of objects, whereas operators specify the preconditions and

results of actions that manipulate objects. Explanation-based methods can use knowledge of such

legal operators to construct general rules that increase problem-solving efficiency (Fikes, Hart, &

Nilsson, 1972).

The most basic application of explanation-based learning to state-space search is straightforward.

Once a problem-solving system has found a sequence of operators that transform an initial state

to a goal, one composes this solution path into a single rule or macro-operator (Fikes et al., 1972;

Iba, 1989). The conditions of this rule include all aspects of the initial problem state that were

required for the solution to hold, and the results include all those actions not undone by others

along the way. This composition process is more complex than the one described in Section 3.4.1

because operators can be nonmonotonic (i.e., they add and delete facts). However, it is simpler in

other ways because solution paths are sequential rather than tree structured.

The construction of macro-operators lets a problem solver take larger steps through a problem

space and thus shorten the effective length of solution paths. In contrast to inductive learning

methods, macro construction is a purely deductive process -- the form of the new rule is completely



PARADIGMS FOR MACHINE LEARNING 21

The top-level
node is the
property whose
description is
to be learned.

Intermediate
nodes are

properties
that are not

directly
observable.

If RestrictedInput (X) and RestrictedOutput (X),

Then Overheats (X) .

If Isa(X,FueI-Pump), Filter(X,Present), Outputs(X,N), and
Greater(10,7xN), .A

If Filter (X, Present),
Then RestrictedInput (X).

1
Filter(Fuel-Pump-1,Present).

If PressureArea (X, PA) and
OutletArea (X, OA) and

Greater (PA, OA),
Then RestrictedOutput (X).

If Isa(X,FueI-Pump) and
Outputs(X,N) and
Greater(10,TxN),

Then RestrictedOutput(X).

If Isa(X, Fuel-Pump), If OutputArea (X,A) and Greater(10,7).
Then PressureArea (X, I0) . Outputs (X, N),

Then OutletArea (X, AxN) .

If Isa(X,FueI-Pump) and

Th Outputs(X,N),

alX, 7).

Isa(FueI-Pump-1 ,Fuel-Pump).

Leaf nodes are immediately observable properties.

Figure 5. Schematic of the representation used by explanation-based generalization. Properties of an instance
(depicted as leaves in the figure) and domain knowledge encoded as rules (depicted in tehtype font)
justify or explain other properties of the instance that may not be immediately observable. By
extracting the weakest preconditions under which this justification holds, one can construct rules
that are more general than the specific instance but more special than the general domain knowledge
rules (depicted below each domain knowledge rule in sans-serif font). These rules allow inferring a
non-observable property by testing only immediately observable properties of an instance.

determined by the primitive operators and their instantiations. Most work on discovering macro-

operators has focused on abstract tasks like the eight puzzh and the blocks world, but it should

apply to any task that can be cast in terms of state-space search. The same basic method also

applies to planning approaches, in which subgoals are created during the problem-solving process

(Minton, 1985).
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3.4.3 LEARNING PREFERENCE RULES FOR PROBLEM SOLVING

Another approach to explanation-based learning generates heuristics for problem solving. Although

early work on rule-based problem solving used domain-independent heuristics to select which state

to expand and which operator to apply during search, some recent learning research has focused on

the acquisition of domain-specific search control rules that conditionally prefer one state or operator

to another. In Section 3.3.1 we saw that one could use empirical methods to learn such heuristics,

but this task also fits the requirements of explanation-based methods, 2 and more work on learning

search control has occurred within this paradigm.

In one version of this approach, a mean-ends planning system uses control rules to select a state

to expand, an operator to apply, and a binding for the variables in the operator (Minton, CarboneU,

Knoblock, Kuokka, Etzioui, & Gil, 1989). When no control rules are available, the problem solver

defaults to performing a depth-first search. When search leads to failure or success, the system

tries to explain that failure or success using general knowledge of problem solving. In both cases,

explanation-based learning compiles the and-or explanation into a control rule that the system

stores away for future use. This approach has been tested on a number of planning domains,

including moderately complex scheduling tasks.

In a related but somewhat different approach, new control rules are learned only when existing

control rules result in an ambiguous decision or impasse (Laird, Rosenbloom, & Newell, 1986). In

such cases, the problem-solving system searches to determ_e the correct answer and compiles the

result into a new control rule. Instead of using explicit knowledge about the operators themselves,

the conditions of the new control rule incorporate those facts that were used in determining the

correct decision, while its actions contain the results of the search. This approach has been tested

on a wide range of domains, including design, puzzle solving, and a computer configuration task

(Rosenbloom, Laird, McDermott, NeweU, & Orcinch, 1985).

3.4.4 OPEN ISSUES IN ANALYTIC LEARNING

Although there have been rapid advances in our understanding of an a!yt!c approaches to ]earning,
there remain manysi_c_t research is-sues_: Th_-c_rent Open problems _

• Incorrect and incomplete Iraowledge. Most existing analytic methods rely on a complete and cor_

- - -rect knOwledge:_but this is seldom a realistic assumption. Researci_ers s_ould develop methods

that behave robustly when some knowledge is missing or faulty (Laird, 1988; Smith, Winston,

Mitchell, & Buchanan, 1985).

• Extending and retting kr_otvledge. Another response to incomplete and incorrect domain

knowledge is to extend _drevise the knowledge base (CarboneU & Gil, 1987; Muggleton &

Buntine, 1988; Ourston & Mooney, 1990). We need methods to detect such problems and alter

the knowledge base; note that this requires some form of inductive learning, though deduction

may also play a role.

2. In particular, preference rules are monotonic (i.e., they only add facts), so they may be acquired using explanation-

based methods.
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• Intractable _owledge. For useful learning to occur in this framework, the system must already

be able to tractably perform search, at least until sufficient knowledge is acquired to control

this search. Knowledge bases for some domains like chess are complete but intractable. What

types of methods can handle approximate knowledge bases (Tadepalli, 1989), and how can

this knowledge be used effectively? Some promising approaches include the use of abstraction

(Ellman, 1988; Knoblock, 1990).

• Nonlogical knowledge. Not all domain knowledge is logical in content; in some domains one must

rely on heuristic rules or probabilistic relations. Researchers should extend explanation-based

methods to use such knowledge to construct explanations and to generate useful rules.

• Evaluating alternative ezplanations. Given multiple proofs, a learning method must decide

which to compile into the knowledge base for future use. Researchers need to identify the

basis for judging an explanation's quality, and they need to devise efficient implementation

techniques for this (Ng & Mooney, 1990).

• The utility problem. Having selected an explanation, a learning method must still determine

whether the resulting compiled rule is worth retaining. Additional knowledge can increase

retrieval costs and branching factors on future problems, and learning methods must decide

ff the cost outweighs the benefit. Recent advances have focused on on simplifying compiled

rules (Keller, 1987; Minton, 1990), limiting the expressiveness of acquired knowledge (Tambe &

Rosenbloom, 1989), and collecting statistics on rule utility (Markovitch & Scott, 1989; Minton,

1990).

As with the other approaches to learning that we have examined, research on explanation-based

methods continues to make steady progress, but much more remains to be done.

3.5 Case-based Methods and Analogy

There is mounting evidence that human experts rely at least partly on memory for individual cases,

particularly in domains such as law, mathematics, design, and planning. Thus, it seems natural to

exploit this idea in constructing AI systems, using memory of specific cases to classify new cases

and to formulate plans. This is commonly called the case-based approach, and it constitutes a fifth

major paradigm of machine learning research. Work on reasoning by analogy also fails within this

general framework.

Unlike many other machine learning methods, a general theme of case-based methods is that

abstraction of prior experience primarily occurs in a lazy fashion. Rather than aggressively ab-

stracting or compiling experience in anticipation of future use, case-based methods typically save

the bulk of their processing until an actual use occurs for this experience. With this deferred pro-

cessing scheme, three fundamental issues arise: (a) retrieving case(s) that may help with a new

case, (b) matching and applying the retrieved case(s) to the new case, and (c) storing the outcome

of the new case for future use. Rather than discuss each of these issues separately, in this section

we review three subparadigms within the case-based paradigm and discuss the issues as they arise.

Now let us consider the placement of case-based methods on the dimensions of Section 2. This

framework represents individual experience either propositionally or with reiational languages, al-
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Fuel pump instances stored explicitly in a three-
dimensional space. (All these pumps have a filter,
so only two dimensions are shown.) Steel fuel
pumps are shaded.

Overheats ,/_ Overheats

|

Stays-Cool j
Overheats

,,_e Outputs Two

Virtual boundary defined by nearest neighbors
that separates cool from overheading fuel pumps.
(Shown for clarity.)

Figure 6. Schematic of the representation used in a nearest neighbor learning method for the fuel-pump
domain. Instances are stored explicitly in a space of N dimensions, where each dimension describes
one feature of the instance. The figure depicts the two-dimensionai ease. To classify an instance,
one finds the nearest stored instance and predicts its class. It is possible to define a decision
boundary representing equal distance from stored instances of different classes (shown as a curved
line in the middle of the figure). Typically these decision boundaries are not stored explicitly.

though the latter axe not as widespread because of the undesirable matching complexity that may

result. Like empirical leaxning methods, case-based methods have been applied to both classifi-

cation and problem-solving tasks; they have been applied in both supervised and unsupervised

leaxning situations; and they axe predominantly incremental. Current case-based methods always

perform induction (usually at retrieval time), but many include an analytic component as well.

3.5.1 NEAREST-NEIGHBOR TECHNIQUES --

In the simplestvarianton the case-basedframework, one simply storespast instancesverbatim.

When  new c£e ise co nt red 0- e ndsthebe tmat from mongthestoredinstances,and

then usesthatcase to directlysupplythe missinginformation.For example, in a medical diagnosis

domain, each case would consistof a patient'ssymptoms'along with his disease. Given a new
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patient's symptoms, this simple variant enumerates stored cases to find the 'nearest neighbor' and

uses its associated disease to predict the patient's malady. Figure 6 illustrates the basic technique,

which originated in work on pattern recognition (Cover H Hart, 1967). Nearest neighbor algorithms

are not limited to classification domains, as shown in recent work using case-based techniques for

state-space problem solving (Bradtke H Lelmert, 1988).

Variants on this method are possible, such as expanding retrieval to making predictions based on

a weighted average using the K nearest neighbors. Applying this technique to the task of mapping

letters to phonemes achieves an 88% predictive accuracy on a test set of 1024 instances (Stan_,

1987). The same research also demonstrates that this method degrades gracefully as one adds noise

and as one decreases the size of the case base.

Uncontrolled growth of the case base is a natural concern in this paradigm. Thus, one may want to

store cases selectively and delete others on occasion. In one instance of this approach, new cases are

stored only when the existing knowledge base leads to a classification error (Aha, Kibler, H Albert,

1991). Although relatively unsophisticated, the predictive accuracy of this approach compares

favorably to methods for inducing decision trees, and a similar approach has been successfully

applied to the challenging domain of speech recognition (Bradshaw, 1987).

3.5.2 ANALOGICAL MATCHING

Given feature-based or attribute-based representations, the process of matching two cases is simple

and inexpensive. However, domains like planning and design require structural or relational rep-

resentations, and these introduce serious complexities into the match process. Since the new case

and the stored case are unlikely to match exactly, one must perform some form of partial matching,

and this problem is exponential (Watanabe H Rendell, 1990).

Researchers concerned with the process of ar_logy have devoted considerable attention to this

issue, with most approaches involving some form of heuristic search through the space of partial

matches. In this framework, the main issue becomes findings ways to constrain and direct the

search for a useful match. For instance, one approach finds mappings that preserve higher-order

relations between two cases in preference to ones that preserve simple features shared by the cases

(Falkenhainer, Forbns, H Gentner, 1989). Other researchers (e.g., Winston, 1984) have proposed

different but related methods. In a complementary vein, knowledge about the domain can help

evaluate potential matches and identify meaningfnl partial matches (Koton, 1988b).

3.5.3 INDEXING AND MEMORY ORGANIZATION

Even with selective storage of cases, complex real-world domains might require thousands of in-

stances, some having considerable structure that requires comple x analogical matching. In such

situations, one cannot afford to exhaustively match against all cases stored in memory, and the ini-

tial storage and subsequent retrieval of relevant cases become central issues. The natural response

is to ir_/ex cases by appropriate features, thus making the retrieval process more selective and

reducing the effect of memory size. Early work on analogy focused on matching to the exclusion of

indexing issues, but this has changed in recent years.
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The first step in inde_ng cases involves selecting an appropriate set of indices. The programmer

can fix the indices at the outset, but this produces an inflexible system that cannot adapt to

new domains. Some researchers (e.g., Lebowitz, 1987) have invoked inductive learning methods to

identify predictive features, which are then used as indices. Others have used explanation-based

techniques to determine relevant features for each case and index on these instead. Problem-solving

domains are especially well-suited to the latter approach, since the trace of problem-solving behavior

(i.e., goal trees) provides ready-made information for explaining success or failure (Carbonell, 1986;

Hammond, 1986), which can then be used to index complex cases. The notion of "derivational

replay" (Mostow, 1989) based on such problem-solving traces has received attention in many circles,

including software engineering and automated VLSI design.

However, indexing by itself is not sufficient to allow efficient retrieval of relevant cases. For large

knowledge bases, one must also organize memory into some manageable structure. Discrimination

networks (Feigenbaum, 1963) are one approach to memory organization, but retrieval of a case

often depends on a conjunction of features being present. This leads to fragility in domains where

features can be missing, but the basic approach can be extended to support redundant indexing

(Kolodner, 1983; Lebowitz, 1987; Fisher, 1987). In addition, one can store abstract summary

descriptions at internal nodes in the network, giving generalization beyond individual cases. The

construction of 'prototypes' in this manner reveals an underlying similarity between case-based

learning and conceptual clustering, which we discussed in Section 3.3.3.

3.514 OPEN IssuEs IN CASE-BASED LEARNING _

Research on case-based approaches has led to a number of promising methods, some of which have

been tested on challenging domains. However, a number of open issues remain to be addressed:
= - ; = ==: .... :

• Selecting i_//ces. A number of methods exist for selecting indices. However, we need to identify

co_ processes fl_at underlie these_approaches and the common inforination they exploit

(Bareiss, Porter,:_ Weir, 1987; Hammed, 1986). We also need to better understand methods

that generate indices dynamically iBarietta&Mark, 1988; Kolodner, 1989; Owens, 1989).

• Memory organization. Some initial work has addressed the organization of memory, but we

need to identify the general properties that a memory should exhibit, and to improve methods

for dynamically reorganizing memory as new cases are encountered (Kolodner, 1983).

• Matching metrics.Many existingtechniquesemploy ad hoc schemes formatching againstcases

inmemory. Researchersneed to searchforunderlyingprinciplesinvolvedin determininga good

match and to develop methods for predictinggood matches (Kolodner, 1989; Koton, 1988a;

Salzberg,1990).

• Multiple eases. _alogy has: predo_nafitly- _oeused on using sophlsticated in/ormation from a

singlecase,whereas K nearest-neighbormethods illustratehow to use simpleinformationfrom

multiplecases.Some earlywork has focusedon combining highlyrelevantbut contrastingcases

(Ashley & Rissland,1988),but we need to identifyother types of informationthat multiple

casescan provide(Aha & Kibler,1990;Redmond, 1990).
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• Connections amor_ cases. In some domains, each case may have a complex, internal structure,

effectively consisting of many component cases. Researchers should devise principled represen-

tational schemes that can capture connections between component cases and find methods for

efficiently storing and retrieving such structures (Jones, 1989; Redmond, 1990; Sycara, 1988).

• Forgetting. Although most cases are useful, storage of all cases can lead to overfitting effects

in noisy domains. We need techniques that can efficiently determine when to forget cases

(A_ha, Kibler, & Albert, 1991). An alternative is to develop methods that selectively acquire

knowledge, thereby limiting the discovery of useless cases and unnecessary processing (Hunter,

1990).

Work on case-based reasoning has produced some promising techniques, but researchers need to

more fully explore the space of such methods, and to carefully evaluate alternative approaches in

terms of their performance on real-world domains.

3.6 Relationships among the Paradigms

Historically, machine learning researchers have emphasized differences among the five paradigms

we have discussed, rather than their similarities. This trend has been encouraged by differences

in terminology, notation, test cases, and methods of evaluation. For instance, researchers studying

connectionist techniques, genetic algorithms, and rule induction often run experiments with their

inductive methods, but they typical]y use different data sets and measure different aspects of

learning behavior. The same problem occurs between workers in the explanation-based and case-

based paradigms. Our discussion so far has reflected this trend, focusing on the differences between

the five learning frameworks.

However, understanding the similarities among these paradigms is equally important to the

science of machine learning. To this end, let us briefly consider some possible connections:

• Symbolic and subsymbolic induction. Many distinguish the "subsymbolic" approach of con-

nectionist and genetic algorithms from the "symbolic" approach taken by empirical methods

for rule induction and decision-tree construction. But despite differences in the representation

of acquired knowledge, the spaces searched, and the learning operators employed, all three

approaches are inductive in nature, and one can generally apply them to the same learning

tasks. Recent comparative studies have clarified this fact (Mooney, Shavlik, Towell, & Gore

1989; Dietterich, Hild, _ Bakirl, 1990), producing comparable results for a variety of methods.

• Induction and ezplanation. Researchers often make a dichotomy between inductive (e.g., empir-

ical) methods and analytic (e.g., explanation-based) ones, characterizing the former as "knowl-

edge lean" and the latter as "knowledge intensive." Yet there is nothing mutually exclusive

about these approaches, and hybrid methods should prove better than either in isolation. For

instance, recent work on empirical methods has shown that domain knowledge and deduction

can improve learning (Drastal et al., 1989; Elio & Watanabe, in press). Similarly, one can

use empirical methods to extend incomplete domain knowledge and to revise incorrect rules

(Carbonell & Gil, 1987; Ourston & Mooney, 1990).
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Ez'planationa and cases. We have seen that explanation-based methods use domain knowl-

edge to construct explanations and compile rules, but some case-bas..ed techniques rely just as

heavily on domain expertise (Braverman & Wilensky, 1990; Redmond, 1989). Although one

approach stores general rules and the other stores specific cases, the reasoning processes can

be remarkably similar.

Cases and abstractions. Researchers often emphasize the distinction between storing specific

cases and forming abstractions. Yet many case-based systems create abstractions as indices

for cases (Kolodner, 1983; Fisher, 1987), making them more accurately described as hybrids.

Nor must a system that stores cases always use them during performance; in some situations, a

hybrid system may prefer to use an abstraction (Fisher, 1989). Moreover, work on conceptual

clustering and on case-based leanling shares a concern with the organization of memory, relying

on similar structures and mechanisms.

In summary, there is considerable overlap between the paradigms in both their concerns and their

approaches, although this is seldom apparent from research papers. Machine learning has just

begun to converge on a set of standard terms and notations for describing systems, and on a set of

standard testbeds and experimental methodologies for evaIuating systems.

Asresearchers start to communicate across paradigm boundaries, they canbeginexploring the

relation-_ s-h_i_s more seriouslyl For instance, one can_ag_me a _o1' induct|0n ttxat

explains the behavior of decision-tree methods, genetic algorithms, and connectionlst networks,

and that predicts the conditions under which each method would be most ap_Pr0priate. One can

also expect the development of hybrid algorithms that cut across paradi_nas to achieve better results

than either in isolation. Some research along these lines has already begun, such as recent work

on combining decision trees with perceptr0ns (Utgot_, 1988). We hope t[xat some researchers will

concentrate their efforts on such cross-paradigm research, since this may lead to new techniques that

otherwise might never come to light. _ such systems were successf_tl, thls Would _further strengthen

the ties between areas, ultimately transforming machine learning into a united field rather than

one composed of many subdisciplines.

4. Methodological Developments in Machine Learning

Machine learningis a scientific discipline, and thus careful methodological foundations are essential

to its success. Over the past few years, some significantmethodological advances have Occurred in

the field,paving the way for more careful work in the future. These include new techniques for the

formal analysis of learning algorithms, new experimental approaches to studying learning, success-

ful applications to real-world domains, and the development of integrated cognitive architectures.

These changes bode well for thisemerging subfieldof artificialintelligence,andwe discuss each of

-thembriefiy below. =.....

I f
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4.1 Theoretical Analyses of Learning Algorithms

Although formal studies of inductive inference have a long history in computer science (Angluin

& Smith, 1983), only recently have theorists started to address issues of concern to researchers

who actually build machine learning systems. Initial ideas focused on the notion of convergence:

Would the learning method eventually construct the exact knowledge desired (Gold, 1967)? This

approach constituted an important first step, but it did not afford much insight into realistic

learning problems.

A major breakthrough came when researchers turned their focus to the question of evaluating

the quality of inductively learned knowledge. The notion of probably approzimately correct (PAC)

learning forwarded the idea that learned knowledge should usually be relatively accurate when

applied in novel situations. Coupling this idea with computational feasibility yields a definition

for problems that are polyr, omially learnable: (a) it must not require too many instances to learn,

(b) there must exist an efficient learning method which can produce PAC knowledge, and (c) it

must be possible to ef[iciently determine whether knowledge is consistent with any given instance

(Blumer, Ehrenfeucht, Haussler, & Warmuth, 1987).

When studying the learnability of a particular problem, one common research tactic is to show

that one of the three criteria cannot be met. However, because each of these three criteria depends

on how acquired knowledge is represented, results of negative learnability can be brittle. For

instance, learning K of N functions using a linear threshold unit with only zero or one weights

is not polynomially learnable, but the same class of functions are learnable if the linear threshold

unit can use integer weights (Haussler, 1990).

The initial theoretical frameworks focused on learning logical, feature-based concepts in a su-

pervised setting (Kearns, Li, Pitt, & Valiant, 1987), but researchers have since extended the ba-

sic framework to other paradigms, including structural concepts (Haussler, 1987), decision lists

(PAvest, 1987), conceptual clustering (Pitt & Reinke, 1988), and connectionist networks (Valiant,

1988). They have also addressed learning in the presence of noise (Angluin & Laird, 1988), and

they have moved beyond inductive methods to deal with explanation-based methods (Natarajan

& Tadepalli, 1988). Even many nontheorists follow this work closely, and many theorists actively

read the empirical literature in search of challenging problems.

4.2 Experimental Studies of Learning AlgorRhms

Despite progress on the theoretical front, many learning algorithms remain too complex for formal

analysis, and recent progress has also been made in the experimental study of learning methods

(Kibler & Langley, 1988). Much of the experimental work has focused on inductive methods

(Faldman, 1988; Fisher, 1987; Quinlan, 1986b; Schlimmer, 1987), but there are also a growing

number of experimental studies of explanation-based techniques (Minton et al., 1989; Shavlik,

1990).

One important insight is that performance is the natural dependent measure for such empirical

studies, since one can define learning as improvement in performance. There are many measures

of performance, including classification accuracy, quality of solution paths, and even CPU time.
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Different measures are appropriate for different domains and different learning methods, since they

may have dlITerent goals. However, having at least some measure of performance is essential to

evaluating a learning system's behavior. In some cases, intuitively plausible learning methods

actually lead to worse performance (Minton, 1985). In other cases, one can use performance

measures to determine which components significantly aid the learning process (Schlimmer, 1987).

Researchers have also started to careful]y examine the aspects of domains that affect learning

behavior. Some experimental studies have focused on naturalistic data in order to show real-world

relevance, but others have constructed synthetic domains to allow control of domain characteristics.

Two obvious features include complexity of the knowledge to be learned and amount of noise in the

data, but others certainly exist. The important point is that many researchers now realize that, in

order to make progress, the field requires some explicit methods for evaluating alternative methods

and for identifying the conditions under which they work well. Theoretical analyses provide one

route to such understanding, but systematic experimentation is another important path.

4.3 Common Testbeds and AppHcatlons

Early research in machine learning focused on idealized, hand-crafted examples, and researchers

often tested their systems on only a handful of cases. This has changed drastically in recent years,

and papers in the literature now commonly report results on realistic learning tasks that involve

many test cases. Moreover, researchers typically report results on a number of different data sets,

to show the robustness and generality of their algorithms. The average number of test domains

should increase as the standards of the field become higher.

Another encouraging sign is that researchers are starting to test their algorithms on the same

task domains, allowing comparisons to be made. This trend has been aided by the collection and

distribution of standard data sets. For instance, data on soybean diseases (Michalski & Chilausky,

i980), thyroid diseases (Quinlan, 1987), edibility of mushrooms (Schlimmer, 1987), and Congres-

sional voting records (Fisher, 1987) have been widely distributed and used in testing a number of

learning algorithms. Major repositories have emerged, with researchers collecting, documenting,

and distributing benchmark data sets. Many of these deal with classification and diagnosis, but

standard problem-solving and reasoning tasks are also beginning to emerge.

Despite these encouraging developments, most of these real-world domains remain relatively sim-

ple and straightforward. We hope that future application efforts will tackle more difficult testbeds

that provide greater challenges for mac_leaming methods. We also hope tlle trend will expand

to include the documentation and distribution of published algorithms, so that researchers can

employ each others' software. This has started to occur within some machine learning paradigms,

but moreremains to be done ........... - _

4.4 Integrated Cognitive Architectures

Another methodological advance relates to the development of integrated architectures for cog-

nition. Early AI researchers commonly implemented a separate system for each new task they

encountered. As the field gained experience, high-level languages (e.g., production systems) were
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developed and used to implement new systems, with considerable savings in time and effort. How-

ever, these languages incorporated only minor theoretical commitments about the nature of intel-

ligent behavior, and thus provided few constraints on the resulting AI systems. For instance, few

formalisms included any automated learning mechanisms.

This trend has changed in recent years, with many researchers now turning to integrated archi-

tectures that make strong assumptions about the control structures needed to support intelligence.

SOAR is a prime example of this approach (Laird et al., 1986), and the classifier systems of the

genetic algorithm community constitute another instance. Most work in this growing movement

includes some automated learning mechanism as an integral part of the architecture, and gener-

ality is a central concern, with researchers testing their frameworks on s variety of domains. For

instance, the PRODIGY (Minton et al., 1989) and TH_.o (Mitchell, A1len, Chalasani, Cheng, Etzioni,

Ringuette, _z Schlimmer, in press) architectures incorporate explanation-based methods into their

problem-solving engines, whereas ICARUS (Langley, Thompson, Iba, Gennari, g_ Allen, in press)

relies on case-based concept formation as its main learning mechanism, and DYNA (Sutton, 1990)

uses connectionist learning methods. Such integrated frameworks will be necessary if we ever hope

to construct intelligent artifacts that can interact with the physical world, and we predict that

learning will occupy a central role in successful cognitive architectures.

5. Summary

Over the last decade, the theoretical and methodological advances described in the previous sections

have transported machine learning from the sidelines of AI into one of its central foci. Along with

this shift has come increased contact with other subcommunities, and as methods for machine

learning become more robust, they are gaining increased attention from researchers concerned with

planning, diagnosis, natural language, and other problem-oriented areas of artfficial intelligence. In

turn, these domains provide significant real-world challenges for scientists who have traditionally

been concerned with abstract issues in machine learning.

Without doubt, the growing concern with applications will reveal limitations of the existing

paradigms and suggest novel directions for automating the acquisition of knowledge. Thus, re-

searchers will be forced to devise new representations, search frameworks, and control schemes to

support the learning process. The resulting approaches may initially be domain specific, inemcient,

and inelegant, but they will respond to issues that have been previously ignored. Such learning

methods may not fit nicely into the organization we have presented, but that is often the nature of

scientific progress.

At the same time, others will continue to pursue basic research on learning mechanisms, driven

by recognized open issues like those we listed above. These scientists will explore variations and

hybrids of existing methods, propose frameworks that unify apparently different techniques, and

carry out experimental and theoretical studies to identify the behavior of alternative methods

under varying conditions. They should also begin to relate experimental results to those predicted

by theory, revising the theory when necessary. Finally, they will attempt to identify new dimensions
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and new themes that have emerged from the applied work, idealizing them in ways that lets them

be studied in the same manner as existing paradigms:

Taken together, basic and applied research in this area should continue to improve the range and

capabilities of learning algorithms, and to increase our understanding of mechanisms for improving

performance with experience. These advances in turn will have far-ranging implications for the

rest of artificial intelligence, letting the field move beyond static systems to ones that change their

behavior over time as they acquire and refine knowledge.
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